National Repository of Grey Literature 12 records found  1 - 10next  jump to record: Search took 0.00 seconds. 
NOx reduction in flue gas
Rumánek, Tomáš ; Jedlička, Filip (referee) ; Dvořák, Radek (advisor)
My master´s thesis deals with the problems of NOx abatement that are included in flue gas. The accent is put on flue gases treatment throug cloth filter or ceramic candles, where the deposited catalyst enables NOx reduction throug the method of selective cytalytic reduction. In thesis is also describe experimental unit which current remove gaseous pollutants (dioxin, VOC and NOX) and ash on catalytic cloth filter or catalytic ceramic candles. For experimental unit has been calculated pressure drop. Pressure drop has been calculated for nominal and maximal conditions for cloth filter and ceramic candle. Last part of thesis deals with compile a experimental schemes for different concentration of NO, flow and temperature of combustion.
Treatment of flue gas polluted by NOx
Hanák, Libor ; Jecha, David (referee) ; Dvořák, Radek (advisor)
There is an overview of secondary methods for NOX removal from stationary sources in the first part of master’s thesis. There are well known methods as SCR o SNCR, but also new and experimental ones. An accent is putting on catalytic filtration, especially on cloth filter, which will be used for experiments. An important part of master’s thesis is a project of new experimental unit for experiments with cloth and ceramic catalytic filters as well as with a bit of cloth filtration material. Unit has compact proportions, high-class measurement and control and wide application spectra. Other advantages of this equipment are fast and easy cleaning and installation. This unit, called INTEQ II, can be used in plants or in laboratories. There is prediction model created together with new technology. It enables calculation of efficiency at catalytic filters with variable conditions without many experiments. This model is elaborate and will be finished with dates from measuring. There in only summary of planned experiments in this thesis, because measurements at new unit have not done yet. Experiences with operations at unit INTEQ I were used for proposal of new equipment and for experiments planning.
Reduction of NOx contained in flue gas
Janík, Prokop ; Jecha, David (referee) ; Jedlička, Filip (advisor)
Research in the field of NOX abatement has grown significantly in the past two decades. The general trend has been to develop new catalysts with complex materials in order to meet the stringent environmental regulations. The master’s thesis deals with the cleaning flue gases through a filter element which is from porous ceramics. There is catalyst implemented for NOx reduction throug the method of selective catalytic reduction in the filter element. There is also description of experimental unit for flue gas cleaning. Part of the thesis is creation of prediction model which allows to predict efficiency reduction in the filtration device operating conditions with some accuracy.
Developing a coupled CFD solver for mass, momentum and heat transport in catalytic filters
Hlavatý, Tomáš ; Isoz, Martin ; Kočí, P.
Using catalytic filters (CF) in automotive exhaust gas aftertreatment decreases the system heat losses and facilitates the CF regeneration. On the other hand, the CF overall performance is strongly dependent on the catalytic material distribution within it. In the present work, we aim to provide a computational framework to study the dependence of the CF characteristics, i.e. the pressure loss and the conversion of gaseous pollutants, on the catalyst distribution. Previously, we built an isothermal computational fluid dynamics (CFD) model of the flow and conversion of gaseous pollutants inside the CF. However, the reactions occurring inside the CF are exothermic and the assumption of constant temperature proved to be too restricting for real-life applications of the developed isothermal CFD model. Thus, in this work, we extend the framework by the enthalpy balance, which requires combining all the transport equations (mass, momentum and enthalpy) in a single solver. The new and more general solver provides results in good agreement with a well established (1+1)D channel model calibrated on experimental data. Furthermore, it allows studying more complex device-scale geometries of laboratory CF samples.
Development of CFD solver for four-way coupled particle-laden flows
Šourek, M. ; Isoz, Martin
Computational uid dynamics (CFD) simulations containing freely moving bodies are still a challenging topic. More so, if the bodies are large enough to a_ect the uid ow and distributed\ndensely enough to come in contact both with the boundaries of the computational domain and with each other. In this work, we concentrate on the topic of simulation of (i) irregular bodies\nwith ow-induced movement and contact with computational domain boundaries taken into account, and (ii) bodies entrained by the uid and coming in contact not only with the domain\nboundaries but also with each other. The developed modeling approach is based on the hybrid _ctitious domain-immersed boundary method extended by the discrete element method. The\npresent contribution is focused on presentation of simulation principles and results of initial benchmark cases.
Geometrically realistic macro-scale model for multi-scalesimulations of catalytic filters for automotive gasaftertreatment
Hlavatý, Tomáš ; Isoz, Martin ; Plachá, M. ; Šourek, M. ; Kočí, P.
This paper is part of a research focused on simulating (i) the catalytic conversion of environment endangering gases, and (ii) trapping of the particulate matter in automotive exhaust gas aftertreatment. Historically, the catalytic conversion and the filtration of soot particles were performed in independent devices. However, recent trend is to combine the catalytic converter and soot filter into a single device, the catalytic filter. Compared to the standard two-device system, the catalytic filter is more compact and has lower heat losses. Nevertheless, it is highly sensitive to the catalyst distribution. This study extends our recently developed methodology for pore-scale simulations of flow, diffusion and reaction in the coated catalytic filters. The extension consists of enabling data transfer from macro- to pore-scale models by preparing geometrically realistic macro-scale CFD simulations. The simulation geometry is based on XRT scans of real-life catalytic filters. The flow data from the newly developed macro-scale model are mapped as boundary conditions into the pore-scale simulations and used to improve the estimates of the catalytic filter filtration efficiency.
Reduction of NOx contained in flue gas
Janík, Prokop ; Jecha, David (referee) ; Jedlička, Filip (advisor)
Research in the field of NOX abatement has grown significantly in the past two decades. The general trend has been to develop new catalysts with complex materials in order to meet the stringent environmental regulations. The master’s thesis deals with the cleaning flue gases through a filter element which is from porous ceramics. There is catalyst implemented for NOx reduction throug the method of selective catalytic reduction in the filter element. There is also description of experimental unit for flue gas cleaning. Part of the thesis is creation of prediction model which allows to predict efficiency reduction in the filtration device operating conditions with some accuracy.
NOx reduction in flue gas
Rumánek, Tomáš ; Jedlička, Filip (referee) ; Dvořák, Radek (advisor)
My master´s thesis deals with the problems of NOx abatement that are included in flue gas. The accent is put on flue gases treatment throug cloth filter or ceramic candles, where the deposited catalyst enables NOx reduction throug the method of selective cytalytic reduction. In thesis is also describe experimental unit which current remove gaseous pollutants (dioxin, VOC and NOX) and ash on catalytic cloth filter or catalytic ceramic candles. For experimental unit has been calculated pressure drop. Pressure drop has been calculated for nominal and maximal conditions for cloth filter and ceramic candle. Last part of thesis deals with compile a experimental schemes for different concentration of NO, flow and temperature of combustion.
Treatment of flue gas polluted by NOx
Hanák, Libor ; Jecha, David (referee) ; Dvořák, Radek (advisor)
There is an overview of secondary methods for NOX removal from stationary sources in the first part of master’s thesis. There are well known methods as SCR o SNCR, but also new and experimental ones. An accent is putting on catalytic filtration, especially on cloth filter, which will be used for experiments. An important part of master’s thesis is a project of new experimental unit for experiments with cloth and ceramic catalytic filters as well as with a bit of cloth filtration material. Unit has compact proportions, high-class measurement and control and wide application spectra. Other advantages of this equipment are fast and easy cleaning and installation. This unit, called INTEQ II, can be used in plants or in laboratories. There is prediction model created together with new technology. It enables calculation of efficiency at catalytic filters with variable conditions without many experiments. This model is elaborate and will be finished with dates from measuring. There in only summary of planned experiments in this thesis, because measurements at new unit have not done yet. Experiences with operations at unit INTEQ I were used for proposal of new equipment and for experiments planning.

National Repository of Grey Literature : 12 records found   1 - 10next  jump to record:
Interested in being notified about new results for this query?
Subscribe to the RSS feed.